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ABSTRACT

Orchids require mycorrhizal fungi (OMF) for their germination and growth. Propagation and re-intro-
duction initiatives would likely require inoculation with such fungi. All Chilean Orchidaceae species are
terrestrial and likely associate with OMF. We collected adult individuals of the endemic Chilean orchid
Chloraea gavilu and transported them to a glasshouse where we obtained mature capsules through
manual auto-pollination. We asymbiotically germinated seeds in vitro using Malmgren Modified
Terrestrial Orchid-Medium (MM). Embryos were put in glass flasks with MM where roots and leaves
developed for 16 weeks. Plants were then transplanted to 165 mL pots and randomly separated into
three groups; plants inoculated separately with Ceratobasidium OMFs isolated from two Chilean orchid
species (Chloraea virescens and Codonorchis lessonii), and uninoculated (control) plants. Plants were
then put in a growth chamber. Three months later, inoculated individuals showed pelotons inside par-
enchyma cells in the roots. Four months after inoculation, mycorrhizal plants had higher root and
shoot biomass compared to control plants. At the end of the experiment, the highest mycorrhization
was achieved with the Ceratobasidium strain isolated from C. lessonii. The artificial mycorrhization of
endemic orchids could be a key strategy for future conservation and propagation initiatives, especially
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for endangered or commercially interesting species.

Introduction

Orchids in their natural habitat usually reproduce through
sexually produced seeds (Heywood et al. 2007). Once released
from the capsule, they strongly depend on mycorrhizal fungi
present in the soil that induce germination and embryo
growth (Bernard 1899, Burgeff 1959; Smith 1966; Pereira et al.
2005; Murguia and Lee 2007; Smith and Read 2008; Valadares
et al. 2012; Herrera et al. 2017). These fungi are called orchid
mycorrhizal fungi or OMF, but non-mycorrhizal endophytic
fungi can also be found inside orchid roots (Herrera et al.
2017). The association with OMF is especially relevant since
orchid seeds lack storage tissues required for seed germin-
ation and seedling development (Bernard 1899; Paudel et al.
2013). In the early stages, orchids are mycoheterotrophic,
obtaining carbon from the OMF (Smith 1966; Arditti and
Ghani 2000; Rasmussen 2002; Smith and Read 2008).
Asymbiotic seed germination (i.e., without fungal inocula-
tion) has been shown to be a proper tool for the production
of plantlets of several orchid species for commercial and con-
servation purposes (Yamazaki and Miyoshi 2006; Kauth et al.
2006, 2008; Dutra et al. 2008; Stewart and Kane 2010; Pereira
et al. 2015, 2017). It has been recognized as a time- and

cost-efficient method because it can achieve high success
rates in some cases, and it does not require previous isola-
tion of fungal species (Johnson et al. 2007; Aggarwal and
Zettler 2010; Abraham et al. 2012, Pereira et al. 2017).
Knudson (1922, 1946) achieved the first successful in vitro
orchid reproduction through seed germination. This method
has been used for successful reproduction of commercially
important tropical orchids such as Cattleya Lindl. and Laelia
Lindl. species (Arditti et al. 1982; Damon et al. 2004).
However, the establishment of protocols for in vitro asymbi-
otic germination of orchid seeds is species-specific and
depends on several factors such as; capsule maturity, compo-
nents of culture media, light and temperature (Arditti 1992).
Compared with their tropical counterparts, there are fewer
studies on asymbiotic germination of terrestrial temperate
orchids (but see Dixon 1991; Pereira et al. 2015, 2017).

In Chile, the Orchidaceae is represented by 8 genera and
72 species, 27 of which are endemic to the country (Novoa
et al. 2015). The genus Chloraea Lindl. is the most diverse in
Chile and include many endemic, and potentially ornamental,
terrestrial orchid species (Novoa et al. 2015). Among
Chloraea species, Chloraea gavilu Lindl. is one of the most
attractive due to its large flowers of intense yellow color,
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and relatively high number of flowers per spike (Novoa et al.
2015). This species is found in Chile from Valparaiso (~32°S)
to Valdivia (~40°S) (Novoa et al. 2015), being far less com-
mon in the northern parts of its distribution.

Recently, Pereira et al. (2017) asymbiotically germinated
seeds of Chloraea gavilu Lindl., and two other Chloraea spe-
cies, using Malmgren Modified Terrestrial Orchid Medium
(MM) with close to 90% germination. However, when plants
obtained in vitro are transplanted to non-sterile media or to
pots with soil, most individuals die and/or rot (personal
observation, data not shown). Adult orchid plants also seems
to require mycorrhizal fungi to grow and survive in natural
conditions (Dearnaley et al. 2012). In fact, the roots of some
Chilean species from different genera have been found asso-
ciated with OMF from the Ceratobasidiaceae and
Tulasnellaceae (Pereira et al. 2014; Atala et al. 2015; Herrera
et al. 2017, 2019) along some other non-mycorrhizal endo-
phytic fungi (Herrera et al. 2017).

In recent years, many Chilean orchids have shown a con-
stant decay in their populations due to an increase in
anthropic alterations of their natural habitats (Atala et al.
2017; Herrera et al. 2019). Given their close association with
soil fungi, conservation programs oriented toward the re-
introduction of orchids in the field, especially endangered or
rare orchids, will likely require re-inoculation of asymbioti-
cally-germinated individuals with specific mycorrhizal fungi.
The current study aims to evaluate the effect of the inocula-
tion with two strains of OMF on the developments and
growth of asymbiotically-obtained C. gavilu plants. As men-
tioned above, this information could be relevant for develop-
ing conservation strategies and for possible propagation
initiatives for the flower industry.

Materials and methods
Plant material

Individuals of Chloraea gavilu Lindl. were collected from the
field and were transplanted to a glasshouse (Figure 1A). At
flowering, we conducted manual auto-pollination of four
flowers per plant with a total sample size of five plants.
Thirty-five days after pollination, capsules were harvested
before dehiscence and were left to dry for 2days at
24+1°C. We harvested capsules at that time following the
visual development of the capsule and previous experience
with this and other Chloraea species. Seeds were obtained
from the capsules and stored in a sealed air-tight flask at
4°C following a previously published protocol (Pereira et al.
2015). For the asymbiotic germination, we used MM medium
(Malmgren, 1996), previously proven to achieve close to 90%
germination in this species (Pereira et al. 2017). The culture
medium was previously sterilized at 121°C and 1atm for
20 min and put in 50 mm diameter Petri dishes in a horizon-
tal flux chamber. Culture medium pH was set to 5.8. Seeds
of C. gavilu were superficially disinfected before germination
as previously described (Batty and Brundett 2001; Pereira
et al. 2017). Seeds were then put in petri dishes containing
culture media described below under a laminar flux chamber
using a sterile dropper. When plants reached the shoot stage

(Figure 1b, Yamazaki and Miyoshi 2006), they were trans-
planted to glass flasks containing MM medium where leaf
and root development occurred for 16 weeks (Figure 1C).

Fungal material

The used OMF corresponds to two strains from the micro-
organism collection of the Laboratorio de Biotecnologia
de Hongos de la Universidad de Concepcion (Fungi
Biotechnology Lab of University of Concepcidn). These fungal
strains were previously isolated from naturally growing
orchids and identified using standard molecular techniques.
The strains correspond to GeneBank accessions KT003599,
isolated from Codonorchis lessonni (Brongn.) Lindl. (hereafter
Ceratobasidium Cl) and MN199626, isolated from Chloraea vir-
escens (Willd.) Lindl. (hereafter Ceratobasidium Cv) (Pereira,
unpublished data). Both strains belonged to genus
Ceratobasidium D.P. Rogers. C. lessonii individuals were col-
lected from a natural population in Los Guindos sector, road
to Antuco Volcano, Biobio Regién (37° 21" 31.26" S, 71° 51’
33.28" W) and C. virescens plants were collected in Pucén
aerodrome, Araucania Region (39°17' 40.34" S, 71° 54’ 25.49"
W). We selected these strains due to their high radial growth
of the mycelium in solid culture (Pereira et al., unpublished
data). From actively growing colonies (Figure 1D), three disks
of agar and mycelium 5mm in diameter were cut and separ-
ately transferred to 100mL Erlenmeyer flasks containing
60 mL of liquid potato dextrose agar (PDA) medium at a pH
of 5.8. The PDA medium was previously sterilized as
described above for the MM medium. Flasks were incubated
in the dark at 24+ 1° C in a stove for 8days in static condi-
tions. Produced biomass (Figure 1E) was harvested and
liquated using a blender. The resulting liquid (mycelial sus-
pension) was used as a source of inoculum for the controlled
mycorrhization.

Plant inoculation

After 16 weeks in glass flasks with MM (as described earlier),
plants were put in individual 165 mL pots (Figure 1F) filled
with previously autoclaved 1:1 vermiculite/peat substrate.
Plants were then randomly assigned to one of three treat-
ments. 1) Control plants (i.e., no inoculation). 2) Plants inocu-
lated with strain Ceratobasidium Cv, and 3) plants inoculated
with strain Ceratobasidium Cl. To each inoculated plants we
added 10mL of the corresponding mycelial suspension 1:10
v/v (1 mL of suspension in 10 mL of distilled water). Control
plants received the same volume but of distilled water only.
Orchids were then left to grow for 12weeks in a growth
chamber, watering once a week indirectly with a constant
volume with distilled water. We used eight plants per treat-
ment (24 orchid plants in total).

Evaluation of growth and mycorrhization

We measured number of leaves, number of roots, and shoot
and root biomass as a proxy for plant growth. At the end of
the experiment, we counted leaves and roots of each plant.
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Then plants were cut and roots and shoots were separated
and dried in a stove (Memmert, model BE-400) at 60°C for
48h. Plants roots and shoots were then weighted with an
analytical scale (RADWAG®, USA) and the dry weight of aerial
and subterranean portions was determined. In all cases, con-
stant weight was achieved after 48 h, thus assuring correct
measurements of dry weight.

We also determined the mycorrhization level in each
orchid. This was done by randomly sampling three roots
from each individual. Roots were transversally cut at the mid-
dle and base and checked for presence of pelotons inside
parenchyma cells (Rasmussen and Whigham 2002; Bertolini
et al. 2012). We also measured the area percentage of the
cross section with fungal presence inside plant cells. Both
parameters (presence/absence of pelotons and mycorrhiz-
ated area) were estimated using a high-resolution scope
(Olympus SZ2-ILST).

T
ﬂ, #‘%

Figure 1. (A) Chloraea gavilu flowers. (B) Seed in shoot stage phase. (C) Seedlings of C. gavilu in an in vitro culture. (D) OMF colonies. (E) Mycelial growth in liquid
culture medium. (F) C. gavilu seedlings at transplant to pots and inoculation. (G) Transversal section of a mycorrhized root of C. gavilu. (H) Hyphae pelotons inside

parenchyma cells. (I) Plants of C. gavilu 4 months after inoculation. Control plants correspond to the two pots at the bottom and inoculated plants (with
Ceratobasidium Cl) correspond to the two upper pots.

Data analysis

The software Statistica 6.0 (StatSoft Inc., Tulsa, OK, USA) was
used for the statistical analyses. Mycorrhizal percentage was
arcsine-transformed to normalize the data. A one-way
ANOVA with inoculation as a fixed factor was used to deter-
mine differences in mycorrhization percentage between
treatments followed by a posteriori Tukey test.

Results

Three months after inoculation of C. gavilu individuals, pelo-
tons inside root parenchyma cells were observed in plants
inoculated with both OMF strains (Figure 1G,H). No pelotons
were evidenced in the control treatment. Four months after
inoculation plants from inoculated treatments were larger
compared to control plants (Figure 2). Plants inoculated with
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Control
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Treatment (inoculation)

Figure 2. Number of leaves and roots in C. gavilu plants four months after inoculation with two OMF and in not-inoculated (control) plants. Different letters corres-
pond to statistical differences (t-test, p < 0.05). Data shown correspond to average + standard error. Sample size = 7 plants per treatment.

the Ceratobasidium Cl strain had more leaves and roots com-
pared to control plants (Figure 2, Tukey test, p < 0.05). Plants
inoculated with the Ceratobasidium Cv strain did not statistic-
ally differ in leaf and root number with the other two treat-
ments (Figure 2, Tukey test, p>0.05). Survival was
unaffected by inoculation and reached 100% in all treat-
ments. Additionally, inoculated plants (both strains) had
higher root and shoot biomass compared to control plants
(Figure 3, Tukey test, p <0.05), but the root/shoot ratio did
not statistically differ between treatments (Mann-Whitney
test, p > 0.05). There were no differences in biomass between
both inoculated treatments (Figure 3, Tukey test, p > 0.05).
Mycorrhization was higher in plants inoculated with strain

Ceratobasidium Cl compared to plants inoculated with strain
Ceratobasidium Cv (Figure 4, Tukey test, p<0.05). No
mycorrhization was evident in control plants (Figure 4).

Discussion

Our study describes for the first time a successful inoculation
of an endemic Chilean orchid, obtained by asymbiotic seed
germination, providing new evidences about the benéeficial
effect of the mycorrhization by the improvement in growth,
survival, and fitness of plants during ex vitro acclimation. A
better understanding of germination and seedling establish-
ment is needed for conservation of orchid populations
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Figure 3. Shoot and root biomass of C. gavilu plants four months after inoculation with two OMF and in not-inoculated (control) plants. Different letters corres-
pond to statistical differences (t-test, p < 0.05). Data shown correspond to average + standard error. Sample size = 7 plants per treatment.

(Swarts and Dixon 2009; Rasmussen et al. 2015). Symbiotic
germination of seed occur naturally in the field and has
been used in laboratory germination assays (i.e., Herrera
et al. 2017). Along with natural substrate modification experi-
ments, in vitro germination can contribute to the under-
standing of the specific requirements for germination and
embryo growth (Thakur and Dongarwar 2013). Asymbiotic
seed germination (i.e., without fungal inoculation), as used
here, has been shown to be a proper tool for the production
of plantlets of several orchid species for commercial and

conservation purposes (Yamazaki and Miyoshi 2006; Dutra
et al. 2008; Kauth et al. 2006, 2008; Stewart and Kane 2010;
Pereira et al. 2015, 2017). However, when reintroduced into
the field, seedlings obtained via asymbiotic germination have
lower survival rates than seedlings obtained via symbiotic
germination (Guimaraes et al. 2013), suggesting the need for
mycorrhizal symbiosis. Successful orchid reintroductions
require a full understanding of orchid mycorrhizal fungi and
their dynamic according to different developmental stages
and environmental conditions because orchid seeds need
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Figure 4. Mycorrhization percentage in C. gavilu plants four months after
inoculation with two OMF and in not-inoculated (control) plants. Different let-
ters correspond to statistical differences (t-test, p <0.05). Data shown corres-
pond to average + standard error. Sample size = 7 plants per treatment.

mycorrhizal fungi to obtain nutritional compounds at early
developmental stages (Smith 1966; Herrera et al. 2019).
While many species can be propagated asymbiotically
in vitro from seeds, or vegetatively from plant explants, the
presence of fungal mycorrhizae is likely to enhance orchid
plant hardening and establishment success in reintroduction
programs in the field (Otero et al. 2013).

Individuals of the terrestrial orchid Chloraea gavilu, pro-
duced asymbiotically in vitro, were successfully mycorrhized
in laboratory condition using OMF strains isolated from other
native orchids. Inoculated (mycorrhized) plants were larger
compared to uninoculated plants, similar to previous field
studies, where inoculated plants were larger and healthier
compared to uninoculated plants, but inoculum increased
growth only in combination with soil aeration (Smith et al.
2015). The difference in growth between inoculated and un-
inoculated plants in our study could be explained by
increased photosynthesis in inoculated plants (Fukai et al.
1997). This higher growth could also be attributed to carbon
transfer from the peat to the orchid through the OMF in ino-
culated plants as seen in other studies (Cameron et al. 2006;
Herrera et al. 2019).

In our study, the Ceratobasidium Cl strain showed the best
results in growth and mycorrhization percentage. Previous
studies in other orchids such as species of Vanilla Plumier ex
Mill. have also found positive effects of Ceratobasidium
inoculation on plant growth (Porras-Alfaro and Bayman 2007;
Orddnez et al. 2012). Other Ceratobasidium strains have also
been found in other Chilean species such as Bipinnula
Comm. ex Juss. and Chloraea species (Herrera et al. 2017,
2019; Pereira et al. 2018). These fungi seems to be important
both to induce symbiotic germination of seeds (Herrera
et al, 2017) and as mycorrhizal partners for adults orchids
(Pereira et al. 2014). They are found, along some
Tulasnellaceae fungi, inside the roots of adult individuals of
several Chilean terrestrial orchids (Pereira et al. 2014, 2015;
Atala et al. 2015; Herrera et al. 2017, 2019) suggesting a
functional role possible in stress tolerance or partial mycohe-
terotrophy. Terrestrial orchids are particularly vulnerable

because of their extreme dependence on co-associated
organisms, namely insect pollinators and mycorrhizal fungi,
and this may explain—in part—why these plants are often
the first organisms to disappear from ecosystems undergoing
change (Dixon et al. 2003; Swarts and Dixon 2009). In Chile,
the main threat for native terrestrial orchids is habitat loss
due to deforestation and clearing for cattle, agriculture, cat-
tle herbivory, and urban development (i.e., Atala et al. 2017).
Moreover, many species are endemic to Central Chile (Novoa
et al. 2015), the most densely populated area of the country
and with higher anthropic impact (Schulz et al. 2011).

The orchid-fungi association of a given orchid species can
be characterized by its specificity. A high specificity means a
single orchid species associates only with closely related
fungi, or even a single fungal species/strain (Otero and
Bayman 2009). Examples of high specificity are found in
some terrestrial orchids from Australia (Swarts and Dixon
2009; Phillips et al. 2011). On the other hand, a more gener-
alist orchid species (i.e., with low specificity), associate with a
phyllogenetically wide range of fungal partners or myco-
bionts (Otero and Bayman 2009). Many tropical orchid spe-
cies are somewhat generalists in their mycorrhizal
associations (Otero et al. 2002; Otero and Bayman 2009),
although some temperate species have also been found with
the same strategy (Herrera et al. 2017). However, there is a
distinction between ecological and potential specificity
(Masuhara and Katsuya 1994; Rasmussen 2002). The first
refers to the in situ associations (i.e., in the field), and the lat-
ter refers to in vitro associations (i.e., in laboratory condi-
tions). The potential specificity means that the in vitro
association with a given fungal species can results in
increased seed germination or plant growth (Otero and
Bayman 2009). This fungal species may be absent from the
orchids’ habitat, but it could help in their in vitro propaga-
tion nevertheless, as was the case of this study.

The in vitro germination and controlled mycorrhization of
orchid species could be a solution for orchid conservation,
especially for endangered species. In Chile, some critically
endangered species are located in unprotected and highly
disturbed sites that have been subjected to pollution and
erosion (Atala et al. 2017). It is unknown if the conservation
status of these species is partially due to a decline in their
mycobionts. Evidence from Australian orchids suggests that
other factors, such as pollinators, could be more relevant in
determining species’ rarity (Phillips et al., 2011). Nevertheless,
for any successful conservation or restoration program of
orchid species, it is vital to ascertain that the requirements of
the focal species are met, not least the factors that limit seed
germination and seedling establishment (Rasmussen et al.
2015). If these requirements are unknown, a program involv-
ing changes in management or plant relocation may not
achieve lasting conservation benefits. Clearly, orchid species
that are currently endangered, either from unsustainable
extraction for commercialization or from habitat degradation
should be prioritized for orchid mycorrhizal studies (Otero
et al. 2013). However, effective application of OMF for con-
servation and commercial purposes requires a considerable
amount of a priori study in order to determine which
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combination of plant species and fungal partner is most
effective (Otero et al. 2013). C. gavilu, seems to have low spe-
cificity in their mycorrhizal associations since it can success-
fully associate with fungi isolated from other orchid species
(even an orchid from a different genus and tribe), and
belonging to two families of fungi, namely Ceratobasidiaceae
and Tulasnellaceae. This information can be essential for
future propagation initiatives both for conservation and for
production of species with a potential economic interest.

Lastly, the mycorrhization and production of adult orchid
plants was possible because stock cultures of previously iso-
lated fungi were maintained and kept in the microorganism
collection at Universidad de Concepcién, Los Angeles
Campus. These type of biological collection can be essential
for the future development of biotechnological and industrial
applications (Hawksworth 1985; Malik and Claus 1987), as
well as in biological conservation and systematics
(Hawksworth 1985, 2003). In fact, some fungi isolated from
Chilean orchid species have a biocontroller effect on patho-
gen fungal species like Rhizoctonia solani J.G. Kiihn (Pereira
et al, unpublished data, but see Mosquera-Espinosa et al.
2013; Otero et al. 2013). We show here, that these fungal
species maintained in pure cultures could be also used in
conservation and propagation of orchid species, possibly also
in endangered species of the same genus like Chloraea dis-
oides Lindl., critically endangered and endemic to Chile
(Novoa et al. 2015). Thus, it is very important to support and
maintain biological collections, such as fungal and bacterial
collections, and to ensure resources for initiatives oriented at
understanding fungal biodiversity.
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